Science and technology in China

In recent decades science and technology have developed rapidly in China. The Chinese government has placed emphasis through funding, reform, and societal status on science and technology as a fundamental part of the socio-economic development of the country as well as for national prestige. China has made rapid advances in areas such as education, infrastructure, high-tech manufacturing, academic publishing, patents, and commercial applications and is now in some areas and by some measures a world leader. China is now increasingly targeting indigenous innovation and aims to reform remaining weaknesses.


China was a world leader in science and technology until the early years of the Qing Dynasty. Chinese discoveries and Chinese innovations such as papermaking, printing, the compass, and gunpowder (the Four Great Inventions) contributed to the economic development in Asia and Europe. Chinese activity started to decrease in the fourteenth century. Unlike in Europe scientists did not attempt to reduce observations of nature to mathematical laws and they did not form a scholarly community with criticisms and progressive research. There was an increasing concentration on literature, arts, and public administration while science and technology were seen as trivial or restricted to limited practical applications. The causes of this Great Divergence continue to be debated. One factor is argued to be the imperial examination system which removed the incentives for Chinese intellectuals to learn mathematics or to conduct experimentation.

After being defeated repeatedly by Western nations in the 19th century, Chinese reformers began promoting modern science and technology as part of the Self-Strengthening Movement. After the Communist victory in 1949 science and technology research was organized based on the model of the Soviet Union. It was characterized by a bureaucratic organization led by non-scientists, research according to the goals of central plans, separation of research from production, specialized research institutes, concentration on practical applications, and restrictions on information flows. Researchers should work as collectives for society rather than as individuals seeking recognition. Many studied in the Soviet Union which also transferred technology. The Cultural revolution, which sought to remove perceived “bourgeois” influences and attitudes, caused large negative effects and disruptions. Among other measures it saw the scientific community and formal education attacked, intellectuals were sent to do manual labor, universities and academic journals were closed, most research ceased, and for nearly a decade China trained no new scientists and engineers.

After Mao Zedong’s death, S&T was established as one of the Four Modernizations in 1976. The new leader Deng Xiaoping, and architect of the Chinese economic reform, was a strong promoter of S&T and reversed the policies of the Cultural revolution. The Soviet inspired system was then gradually reformed. Media began promoting the value of S&T, scientific thinking, and scientific achievement. The third and fourth generations of leaders came almost exclusively from technical backgrounds.

The State Council of the People’s Republic of China in 1995 issued the “Decision on Accelerating S&T Development” which described planned Science & Technology development for the coming decades. It described S&T as the chief productive force and affecting economic development, social progress, national strength, and living standards. S&T should become closely associated with market needs. Not only Soviet style institutes should do research but also universities and private industries. State institutions should form joint ventures with Chinese or foreign venture capital in order for S&T developments to reach the industry. S&T personal should become more occupationally mobile, pay should be linked to economic results, and age and seniority should become less important for personal decisions. Intellectual property rights should be respected. Information exchange should improve and there should be competition and open bidding on projects. The environment should be protected. Chinese indigenous S&T in certain key areas should be especially promoted. Public officials should improve their understanding of S&T and incorporate S&T in decision making. Society, including Communist Party youth organizations, labor unions and the mass media, should actively promote respect for knowledge and human talents.

During the last 30 years China concentrated on building physical infrastructure such as roads and ports. One policy during the last decade has been to ask for technology transfer in order for foreign companies to gain access to the Chinese market. China is now increasingly targeting indigenous innovation.


China, as well as other Asian nations, sees science and technology as vital for achieving economic and political goals as well as national prestige. Lacking indigenous technological intellectual property and innovation are seen as key national problems. Premier Wen Jiabao in 2006 stated that “Without independent innovation China would be unable to claim an equal place in the world or achieve national honor”.

Despite the Chinese economic reforms, the Chinese state, as also is the case in several other Asian nations, continues to heavily direct both the public and the private economy and research by means such as national plans, regulations, taxes, and subsides. Developing and prioritized industries and research are protected and guided. There are systemic efforts to replace foreign technology and intellectual properties with indigenous. Foreign companies are given many incentives for technology transfer and for moving R&D to China. At the same time the technological abilities of the indigenous companies are supported in various ways. The importance of the nationalistic top-down governance as compared to the importance of other factors, such as the economic liberalization, for the rapid progress of Chinese S&T is uncertain. There is a potential for conflict and opposing, foreign nationalistic policies if problems for foreign companies and nations are blamed on Chinese economic and scientific advances and Chinese nationalistic policies.

Nationalism and nationalistic achievements have been seen as becoming the main ideological justifications and societal glue for the regime as Marxism loses influence. Some science and technology mega-projects has been seen as questionable trophy projects done for propaganda purposes with Chinese state-controlled media being filled with reports of Chinese achievements.

Gross Domestic Expenditures on Research and Development

Between 2000 and 2008, Gross Domestic Expenditures on Research and Development (GERD) rose by an average of 22.8% annually, which increased the share of GERD to GDP from 0.9% to 1.54%. China aims to increase this to 2.5% by 2020. In 2008 82.76% went to experimental development, 12.46% to applied research, and 4.78% to basic research. Business enterprises contributed 59.95% of GERD in 2000 and 73.26% in 2008. Spending by enterprises is predominantly on experimental development. China aims to increase basic research’s share to 15% by 2020.

The research firm Battelle estimates that China’s R&D expenditures will exceed that of the United States in 2023.



 The State Council of the People’s Republic of China is the top administrative organ in China. Immediately below it are several ministries and ministry level organisations involved with various aspects of science and technology. The State Council Science and Education Leading Group, consisting of the leaders of the major science bodies, attempts to organize the national policy. Efficiency of overall coordination has been questioned with various agencies seen as having overlapping missions and rivalries for resources and sometimes engaging in wasteful duplication.

The Ministry of Science and Technology of the People’s Republic of China, formerly the State Science and Technology Commission, is the body primarily responsible for science and technology strategy and policy. It also administers national research programs, S&T development zones, and international cooperation. The Ministry of Education of the People’s Republic of China oversees education as well as research institutes at universities. Several other ministries such as the Ministry of Industry and Information Technology of the People’s Republic of China, the Ministry of Health of the People’s Republic of China, and the Ministry of Agriculture of the People’s Republic of China are also involved in S&T.

The National Planning Office of Philosophy and Social Sciences directs planning for social sciences and philosophy.

The Chinese Academy of Sciences (CAS) is the most prestigious professional science organization in China with China’s scientific elite being members. It directs many research institutes, research programs, graduate training programs, and gives influential advice. The Chinese Academy of Engineering (CAE) gives important advice but unlike the CAS does not have research institutes of its own. The Chinese Academy of Social Sciences (CASS) has a similar role to CAS for social sciences and philosophy. There are also many more narrow academies such as the Chinese Academy of Fishery Sciences.

The National Natural Science Foundation of China (NSFC) gives grants to individual researchers after peer-review.

The People’s Liberation Army General Armaments Department directs military R&D.

The national scientific and academic organizations affiliated to the China Association for Science and Technology are also important forces in scientific and technological research.

Research is carried out by governmental research institutes, in higher learning institutions, and by private enterprises.

Local governments have become increasingly important in R&D funding and may now contribute up to half of government spending. Intense rivalry for research and high-tech industry has been argued to sometimes create wasteful subsidized overcapacity, dispersal of efforts better centralized in a few localities, and poorly judged bureaucratic subsidizing of technologies that soon become out-dated.

National programs

China’s national R&D programs include:

  • Key Technologies Program (renamed in 2006 as “zhicheng” or Support)
  • National High Technology Program (863 Program)
  • National Basic Research Program (973 Program)
  • Spark Program – Rural technology
  • Torch Program – New technology commercialization by creating special hi-tech zones and incubators
  • Key Laboratories Program
  • Engineering Research Centers
  • State Key and New Product Program
  • Innovation Fund for Small and Medium-Sized Enterprises
  • Special Technology Development Project for Research Institutes
  • Action Plan for Promoting Trade by Science and Technology
  • National New Products Program
  • Agricultural S&T Transfer Fund

The major national programs receive 15-20% of government R&D spending. They fund research, after a stated competitive proposal procedure, in universities, institutes, and enterprise. Important project may receive funding from several programs. The programs are argued to have had a large effect but have also been involved in scandals, corruption, fraud, accused of producing derivative works with few innovations, and claimed to ignore merit in selecting projects in favor of cronyism. China is trying to improve the efficiency by measures such as more peer-review and evaluations.


Economic and Technological Development Zones

Based on the success of the Special Economic Zones of the People’s Republic of China, China has created Economic and Technological Development Zones. They have the purposes of building up high-tech industries, attracting foreign investment, increasing exports, and improve the regional economy. They are considered to have been very successful and have been expanded from an initial fourteen to fifty-four.

Technology transfer and R&D by multinational corporations

In the early 1980s foreign companies began transferring technology by licensing agreements and sales of equipment. Later in the 1980s many multinational corporations started transferring technology by entering into joint ventures with Chinese companies in order to expand in China. China in the 1990s introduced increasingly sophisticated regulations of foreign investment by which access to the Chinese market was traded for technology transfer. The entry of China into the World Trade Organization in 2001 required this practice stop but critics argue that it continues. Chinese critics have argued such technology transfer may be useful for catching up but does not create new, cutting edge technologies.

China has increasingly encouraged multinational corporations to create R&D centers in China. Chinese critics have argued that foreign owned R&D mainly benefits foreign companies and removes many talented Chinese researchers from indigenous companies and institutions. Chinese supporters have argued that the foreign R&D serves as a role model and encouragement for indigenous companies and creates skilled communities from which labor and knowledge can easily flow to indigenous companies. In 2010 there were 1,200 such R&D centers and 400 out the Fortune 500 corporations had created such R&D centers. Corporations have argued that this is a necessity in order to adapt products for the local requirements of the Chinese market as well as it being essential for maintaining global competitiveness to make use the many available Chinese engineers and scientists. China is now ranked first when multinational corporations are asked in which nation future R&D centers are most likely to be located.


A 2005 report found serious shortcomings to China’s national innovation system. There were problems with services to help turn S&T work into results and the allocation of national funding to support S&T was far from optimal. Sometimes researchers became short-sighted if they get too close to the market. Another serious problem was that companies facing severe competition looked first to purchase foreign technology rather than investing in developing technology and technology development capacity at home in China. Many of the patent applications came from medium-sized enterprises (70%) since small enterprises invest little in research. China’s hierarchical, top-down society where authority is greatly respected and feared has been argued to stifle creative debate.

China in a 2006 report outlined policies for improving innovation. They include 20 large megaprojects in areas such as nanotechnology, high-end generic microchips, aircraft, biotechnology, and new drugs. This is combined with a more bottom-up approach on a Silicon Valley model consisting of small start-ups, venture capital, and cooperation between industry and universities.

It has also been argued that China is the world leader in making small, innovative improvements to existing designs. One example is continual improvements to the design of power supplies making them gradually smaller, less expensive, and more energy efficient. This may not create completely new products or create headlines but may be more important for creating employment.


Electronics and information technology

 In 2009 China manufactured 48.3% of the world’s televisions, 49.9% of mobile phones, 60.9% of personal computers, and 75% of LCD monitors. Indigenously made electronic components have become an important source of recent growth. The Chinese software industry in 2010 had a higher than 15% share of the world’s software and information service market and had been growing by an average 36% each year during the previous decade. Chinese IT companies have been moving away from narrow downstream services and products to having a full range. China, with the active support of the Chinese government, is a leading pioneer in Internet of Things technology.

According to the China Internet Network Information Center there were 505 million Internet users in November 2011. 37.7% of the population were internet users. The number of microblog users had increased by more than 100 million during the past six months to more than 300 million. In 2011 23% of the world’s internet users were Chinese which was more than twice the share of any other nation. China in 2012 aimed to double its e-commerce market by 2015 and become the world’s largest.

In 2012 China surpassed one billion mobile phone accounts although the number of users is likely smaller since the same person may be using multiple accounts. 100 million accounts had been added since the previous year. The number of 3G accounts nearly doubled to 144 million. The number of fixed line subscriptions declined to 284 million.


Supercomputing in China has expanded rapidly. Supercomputing affects the possibility to do cutting edge research in many areas such as design of pharmaceuticals, cryptanalysis, natural resource exploration, climate models, and military technology. In 2011 China had 74 of the 500 biggest supercomputers while a decade earlier it had none. China is developing the capacity to manufacture the components domestically and plans to be the first to build an exascale supercomputer. China may also be planning to create much more powerful large-scale distributed supercomputing by connecting its supercomputer centers together. Tianhe-1 was for a period in 2010-2011 the world’s fastest supercomputer. In June 2013, Tianhe-2, the successor to Tianhe-1, retook the crown again.


China’s semiconductor industry has despite extensive governmental support had many problems in areas such as innovative new designs. This may be due to factors such as poorly guided state and local government support for soon outdated technologies and geographically scattered efforts, lacking engineering education, and poor protection of intellectual property. This may change by factors such a new emphasis on market mechanisms rather than direct support, concentration of efforts, return of Chinese who have studied abroad, increased pressure on foreign companies to transfer technology, indigenous Chinese technological standards, and increased demands for indigenous technology in the local market.

Machine tools

Development of advanced machine tools, such as computer numerical control machine tools, are seen as a priority and supported by the Chinese government. China is the world’s leading producer and consumer of machine tools. A 2010 US government report stated that US export controls of advanced five axis machine tools were ineffectual due to the technical capabilities of Chinese and Taiwanese manufacturers.


In some regions, such as the Pearl River Delta, manufacturers have problems with labor shortages, raising wages, and higher expectations regarding work from more highly educated young people. This has increased the demand for industrial robots. In 2014 China is predicted to be ranked fifth regarding the total number of robots installed and to be ranked first regarding the number of new robots installed.


China in 2012 produced more than one third of the developed world’s apparel import but the share has been decreasing in recent years as low-technology and labor-intensive production has been moving to regions like Southeast Asia and Eastern Europe.

Mining and rare earth industry

Advisory firm The Beijing Axis director Lilian Luca in 2010 stated that China was becoming a world leader in mining technology. Technological solutions were initially concentrated on achieving massive low-cost production but increasing emphasis has been placed on environmental and safety issues in part reflecting greater concern in China with environmental issues. China was already a world leader in certain areas such as rare earth elements. China has imposed export quotas on rare earth elements, 95% of which are mined in China, citing environmental issues, but has been accused of wanting to force high-tech industry using rare earth elements to move to China.

Finding rare earth elements is only the first and some argue the easiest step. Other steps towards manufacturing such as refining is controlled by China and Japan with the previously dominant United States having lost all of its producers and much of its fundamental technological ability with the number of scientists and engineers in the area declining dramatically.

Material science and nanotechnology

A 2012 study found that China’s share of academic papers on nanotechnology had increased from less than 10% in 2000 to nearly a quarter in 2009 and had overtaken the United States for the first position. However, China was less influential in the top three journal and regarding citations. China was increasing its share in influential journals. China was on second place regarding received patents. National standards and oversight bodies had been created.


KPMG in 2010 predicted that the Chinese chemical industry will become world’s largest producer by 2015. The Chinese government aims to make China self-sufficient regarding petrochemicals and plastics with the exception of the raw feedstock of oil and gas. The Chinese industry is increasing R&D in order to create higher value products using more advanced technology. Another development is increasing focus on environmental concerns and renewable energy technology.


There is a lack of arable land and water which means only new technology can increase the output of Chinese agriculture. Former President Jiang Zemin’s has therefore called for a “new revolution in agricultural science and technology.” Restrictions and regulations concerning genetically modified foods have been introduced or proposed after widespread public concern. China has been buying millions of foreign breeder animal as well as large amount of foreign semen and livestock embryos in order to rapidly improve the genetics of Chinese livestock. More advanced agricultural methods such as increasing use of pesticides has contributed to concerns regarding the Food safety in China.

Fishing and aquaculture

In 2008 the fishing industry in China accounted for 34% of the global output. Aquaculture in China had more than twice the output of capture fishing and contributed 62.3% of the global aquaculture output. The rapid growth of aquaculture is in part due to Chinese research such as regarding the artificial breeding of carps.

Biotechnology and genetics

Monitor Group in a 2010 report predicted that China within a decade will become the world leader in discovery and innovation in life sciences. Some research is seen as less controversial in China than elsewhere such as research regarding the genetic causes of intelligence. BGI, formerly Beijing Genomics Institute, has been described as having the world’s largest DNA sequencing facilities.

Stem cell research and stem cell treatments are less controversial in Chinese culture which have supported Chinese research as well medical tourism to China in order to receive experimental and often unproven therapies. In 2012 a regulatory crackdown was instituted which may increase the ability of the Chinese industry to get approval for sales of future therapies to other nations. More generally, China aims and has made progress towards becoming a world leader in regenerative medicine which also includes areas such as tissue engineering and gene therapy.

China in 2011 stated that biotechnology (including biopharmacy, biological engineering, bio-agriculture and biomanufacturing) was a major priority for science and technology spending. Biotechnology will be used to enhance economic development as well as for improving Chinese environmental protection, nutrition, healthcare, and medicine. The Chinese governments expects biotechnology to add 1 million jobs during the 2011-2015 period

Pharmaceuticals and medical technology

Merrill Lynch predicted in 2011 that China would become the world’s second largest pharmaceutical market in 2013 and the largest in 2020. The chief executive of Hoffmann-La Roche in 2012 stated a few years ago many Chinese life sciences scientists had to leave China but that many were now returning to conditions often better than in the West regarding laboratories, funding, and political support for the industry. Counterfeit drugs have caused a number of scandals as well as being a problem for drug development and authorities have increased regulations and enforcement.

A 2011 report by PwC stated that a decade earlier China barely had any presence in the medical technology industry but its abilities had been rapidly growing. China could well become more important than Europe by 2020.

Environmental issues

Rapid industrialization has been accompanied by many environmental problems and rising pollution in China. One part of the Chinese response involves advanced technology such as the world’s largest high-speed rail network and high fuel efficiency requirements for vehicles. China is rapidly expanding its wastewater treatment systems and power plant emission reduction systems. Due to the Chinese water crisis, as well as for future exports, China is building up its desalination technological abilities and plans to create an indigenous industry. Some cities have introduced extensive water conservation and recycling programs and technologies.

Power generation and transmission

As China rapidly industrializes power consumption and power generation are also increasing as well as research on these issues.

Coal is predicted to remain the most important power source in the near future and China has been seen as the world leader in clean coal technology. In 2009 China become the world’s largest investor in renewable energy technologies. Nuclear power is planned to be rapidly expanded with China wanting to maximize self-reliance in nuclear reactor technology manufacturing and design although international cooperation and technology transfer are also encouraged. Advanced pressurized water reactors such as the CPR-1000 and the AP1000 are the mainstream technology in the near future. Later very high temperature reactors, such as pebble bed reactors, are a priority. By mid-century fast neutron reactors are seen as the main technology.

China in 2012 intended to spend $100 billion on smart grid technology during the next five years, to install 300 million smart meters before 2016, and to become the world leader on electric power transmission. Ultra high voltage electricity transmission in China is being introduced order to reduce transmission losses.


Transportation infrastructure continues to be rapidly developed. The National Trunk Highway System was in 2011 estimated to surpass the US interstate system in length. Many Chinese cites have or are planning to build metros or other forms of rapid transit.


BBC wrote in a 2011 article on high-speed rail in China that China in 2005 had no high-speed railways. In 2010 it had more than Europe and in 2012 China was expected to have more than the rest of the world combined. China demanded that foreign companies wanting to participate had to share their technology. 10,000 Chinese engineers and academics then in three years produced a faster Chinese high-speed train. China is now exporting it to other nations. The high-speed rail network has been criticized in the American media as a questionable state megaproject aimed at increasing national pride and growth but having had problems such as corruption, construction quality, safety, low utilization due to high ticket prices, and high costs.

Motor vehicles

The automotive industry in China is the world’s largest producer of motor vehicles. However, China’s indigenous car companies have had difficulties on the global market and the growing electric vehicle market has been seen as way to remedy this. China in 2010 proposed controversial legislation requiring foreign electric vehicle producers to form minority joint-ventures and share technologies with Chinese carmakers in order to get market access. A 2011 report financed by the World Bank stated that China was becoming the world leader on electric vehicles.

Commercial aircraft

The state owned Comac aerospace manufacturer aims to reduce Chinese dependency on foreign companies for large passenger aircraft. The future C919 aims to be completely made in China.


In 2009-2010 China become the world’s largest shipbuilder but South Korea regained the top position in 2011 in part due to more advanced technology. China is developing its technological abilities and competition is expected to increase.


The Chinese animation industry and access to the latest technology, such as 3D computer-generated imagery technology, is actively supported by the Chinese government and included in the latest national planning. In part this may be because of a desire to increase Chinese soft power. The same technology as in Hollywood is available and much postproduction is outsourced to China. Successful indigenous artistic creativity is seen as a problem and may be restricted by factors such as production being aimed at getting government patronage rather than public approval, censorship, and some story lines based on Chinese culture not appealing to foreign audiences. DreamWorks Animation, in a joint venture with Chinese companies, will set up a studio in Shanghai that may eventually get bigger than DreamWorks HQ, in part to avoid to quota restrictions on foreign films with China within a decade having been predicted to become the world’s biggest cinema and entertainment market. Disney has also entered into a partnership in order to help develop the Chinese animation industry.

The China Research Institute of Film Science & Technology and the China Film Group Corporation developed and in 2012 put into commercial use the DMAX motion picture film format as well as associated technologies. It has been described as a competitor to IMAX and as laying the foundation for Chinese film projection technology using indigenous Chinese technology and intellectual property.

Polar research

The Chinese Arctic and Antarctic Administration (CAA) organizes China’s scientific program for both the Arctic and Antarctic. Polar research by China, in particular in Antarctica, has been growing rapidly with China now having three Antarctic research stations and one in the Arctic on Svalbard.

Deep sea exploration

China is developing its deep sea exploration capabilities, such as by the Jiaolong submersible, with an eye to future applications such as deep sea mining.

Space science

The Chinese space program is a major source of national pride. In 1970 the first Chinese satellite, Dong Fang Hong I, was launched. In 2003 China become the third country to independently send humans into space with Yang Liwei’s spaceflight aboard Shenzhou 5. In 2008 China conducted a spacewalk with the Shenzhou 7 mission. In 2011 Tiangong-1 was launched which was the first step towards a Chinese space station around 2020. The active Chinese Lunar Exploration Program includes a lunar rover in 2013 and possibly a manned lunar landing in the 2020s. Experience gained from the lunar program will be used for future programs such as exploration of Mars and Venus.

China plans to launch 5 commercial satellites for foreign customers in 2012 and aims to capture 15% of the commercial launch market and 10% of the satellite export market by 2015. In 2011 China launched a total of 19 rockets which was the second most after Russia.

The Five hundred meter Aperture Spherical Telescope to be completed in 2016 will be the world’s largest radio telescope.

Military technology

One example of new Chinese military technology is the DF-21D anti-ship ballistic missile which reportedly has contributed to a quick and major change in US naval strategy. China is developing anti-satellite weapons and plans to make the navigational Beidou system global by 2020. Other new technologies include Chinese anti ballistic missile developments, the Chengdu J-20 fifth-generation jet fighter, and possibly electromagnetic pulse weapons. Chinese reconnaissance satellites are, according to a 2011 report, almost equal to those of the United States in some areas in which China had almost no capability a decade earlier. Despite increased defense spending, China’s share of the world’s import of arms is rapidly falling, in part reflecting the increased abilities of the indigenous military production. China is also developing power projection military capabilities such as through the Chinese aircraft carrier program and the Type 071 amphibious transport dock.

15-28% of governmental R&D expenditures may go to military research according to some unofficial estimates. The Chinese defense sector remains almost completely state owned but military equipment production has been reorganized into corporate bodies allowing limited competition and the defense patent system has been reformed to allow greater rewards to innovative enterprises and individuals. The organizational structure has shed civilian applications while at the same time cooperation with the civilian sector has increased and state supported civilian research sometimes have dual use applications. Chinese jet engines remains a problematic area that has caused concern at the highest levels with China still being largely dependent on imports from foreign manufacturers. One possible explanation is a continued Soviet style fragmentation of the research and production line into many isolated units having little contact with one another causing problems with overall standardization, integration, and quality control. More problems from this may be duplication of efforts, dispersal of efforts, and unproductive competition over patronage causing problems such as dishonest reporting of problems. High precision jet engines may be particularly sensitive to accumulated quality problems.